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Abstract

This contribution deals with the use of spectral analysis as a means of analysing the dynamic behaviour of the axially

symmetric multi-layered systems as a result of a transient force. The objective of this research work is to develop an

accurate and computationally e�cient forward tool suitable for solving inverse problems. The spectral element tech-

nique is utilized. Details of the mathematical derivation, implementation and veri®cation of newly developed axi-

symmetric and half-space spectral elements are presented. It is shown that the suitability of the spectral element method

to such a problem encompasses in its ability to model a whole layer without the need for subdivisions. As a conse-

quence, the size of the modelled structure becomes as large as the number of the layers involved. This reduces the

computational requirements substantially and hence enables e�cient utilization of the method in iterative algorithms

for solving inverse problems. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Non-destructive testing for parameter identi®cation and structural evaluation is a widely used technique
in many ®elds. Parameter identi®cation problems involve forward as well as inverse techniques. Solving the
forward problem requires structural and material models to predict the values of some response quantities
(e.g. displacements) from the given values of the model parameters. Solving the inverse problem requires
techniques to infer the values of the model parameters from measured values of the response quantities. In
this paper, the forward model will be addressed. In a subsequent paper, the use of the forward model for
parameter identi®cation will be presented.

The objective of this research work is to develop an accurate and computationally e�cient forward tool
for analysing the dynamic behaviour of layered media. This tool will be utilized, in a later work, in an
iterative algorithm for solving inverse problems. As an application, the case of pavement response under
the action of a falling weight de¯ectometer (FWD) load pulse is examined.
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For roads and air®elds the FWD (Fig. 1), is a commonly used non-destructive dynamic test for para-
meter identi®cation of pavement layers. The FWD instrument consists of a large mass that is dropped from
a certain height onto a set of rubber bu�ers mounted to a circular footplate (Van Gurp, 1995). The resulting
impact approximates load e�ects of a truck wheel. De¯ection sensors are used to record the vertical dis-
placements at the surface at various radial distances from the loading centre. Maintenance strategies, in
many countries all over the world, are based on the results of this test.

Commonly, either analytical or numerical methods are used for solving dynamic problems. Analytical
methods usually imply exact solutions of wave propagation. They can be e�cient for both forward and
backward analyses. However, due to their nature, analytical solutions typically apply only to speci®c ge-
ometry and boundary conditions. In practice, various layer combinations and boundary conditions are
encountered. Also, di�erent instruments of di�erent load characteristics are used in testing. All these render
the analytical methods inept for utilization in practical applications.

Numerical methods and, in particular, the ®nite element method, is a general tool that can be used for
the analysis of complex geometries and boundary conditions. However, and in spite of the recent advances
in processor technology, powerful computing facilities are necessary even for problems of moderate size.
This renders the ®nite element method di�cult for utilization in inverse problems.

Over the years, many techniques have been developed for the analysis of wave motions in layered media.
They involve combination of analytical and numerical solutions. Important work has been done by
Thomson (1950) and Haskell (1953), who developed the layer transfer matrix method. For a given layer
bounded between two interfaces, j and j� 1, this method relates the amplitudes of force vector fP̂g and
displacement vector fÛg at interface j to those at interface j� 1 by

Ûj�1

P̂j�1

� �
� H11 H12

H21 H22

� �
Ûj

P̂j

� �
; �1�

where Hij are submatrices of the transfer matrix (Haskell, 1953). Kausel and Roesset (1981) have further
developed this method by introducing layer sti�ness matrices analogous to those used in the ®nite element
method by rearranging Eq. (1) to appear as

P̂j

P̂j�1

� �
� ÿHÿ1

12 H11 Hÿ1
12

H22Hÿ1
12 H11 ÿ H21 ÿH22Hÿ1

12

� �
Ûj

Ûj�1

� �
: �2�

Fig. 1. Scheme of FWD instrument.
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Although this method adds no accuracy to the transfer matrix method, it is more e�cient for numerical
implementation due to the symmetry of the sti�ness matrix (unlike that of the transfer matrix method).
Kausel and Roesset provided continuous as well as semi-discrete solutions to the resulting system of dy-
namic equations. The continuous solutions describe wave motions in a layer in an exact form by solving a
set of transcendental equations. However, these solutions exhibit, in some applications, instabilities due to
the numerical complications involved in implementing in®nite integration in computer codes. For example,
in case of sharp variations in the sti�ness of a layered system, a numerical oscillatory behaviour may occur
during the contour integration of the displacement functions between zero and in®nity in the spatial do-
main (Foinquinos et al., 1995). This occurs due to the singularities and/or the sharp peaks (depending on
damping) that are encountered in the process.

A semi-discrete solution to such problems was ®rst introduced by Lysmer (1970), who developed the
lumped mass method for the analysis of Rayleigh waves in multi-layered elastic media. Later, this
method was generalized by Kausel and Roesset (1981). Here, the wave motion is described exactly in the
horizontal direction and approximately, by linear interpolation between the layer interfaces, in the ver-
tical direction. The basic principle of the method is to divide the layer into sublayers with thickness
smaller than the wavelengths of interest. This enables the substitution of the transcendental equations of
the continuous technique with simple eigenvalue problems, which can be solved by standard techniques.
This results to a more e�cient numerical implementation. The layer sti�ness matrix in this case is ex-
pressed as

K � Ak2 � Bk �Gÿ x2M; �3�

where k is the wavenumber, x is the frequency of excitation, A, B, G are matrices of the material elastic
properties and M is the lumped mass matrix. (Explicit expressions for the A, B, G and M matrices are given
by Kausel and Roesset (1981)). Because the mass of the layer is lumped on the elementÕs upper and lower
interfaces, many elements are necessary for accurate description of the distribution of the mass.

Both the continuous and the semi-discrete techniques are suitable for the analysis of the far ®eld
problems. Tassoulas and Kausel (1983) have further extended these techniques to account for wave motions
in ®nite regions with inhomogeneous boundary conditions caused by spatially ®nite loading. This method
entails introducing specially developed elements under the loaded region and connecting them horizontally
to the normal layer elements.

Because of the computational robustness of the semi-discrete formulation, compared with that of
the continuous, it has been utilized in many engineering applications. However, the requirements for the
subdivision of the layer elements and the introduction of additional elements for the simulation of the
inhomogeneous regions result to a large system of equations that are to be solved. As a consequence, large
amounts of computer time are needed, rendering these formulations ``computationally expensive'' for
utilization in iterative schemes for solving inverse problems.

The spectral element method developed by Doyle (1997) combines elegantly the exact solution of wave
motions with the ®nite element organization of the system matrices. In this, the system is solved by double
summation over the involved frequencies and the wavenumbers (Rizzi and Doyle, 1992), alleviating thus
the inconvenience of the numerical implementation of in®nite integration. The mass distribution is mod-
elled exactly and hence only one element is su�cient to describe a whole layer without the need for sub-
divisions. This makes the resulting system of dynamic equations very small and hence computationally
e�cient. Also, the method is suitable for both near ®eld as well as far ®eld problems, which makes it
appropriate for FWD analysis.

In this article, the mathematical derivation, implementation and veri®cation of a newly developed axi-
symmetric layer spectral element and a half-space spectral element are presented. The elements are utilized
for the analysis of the dynamic behaviour of pavement structures under the impact of the FWD load pulse.

R. Al-Khoury et al. / International Journal of Solids and Structures 38 (2001) 1605±1623 1607



2. Wave motion in axi-symmetric systems

To describe wave motions in a solid medium, a homogeneous isotropic half-space z P 0 in the cylindrical
co-ordinate system shown in Fig. 2 is considered. The system is assumed to be subjected at z� 0 to a
symmetrical normal load P�r; t� � S�r�F �t� in which S�r� represents its spatial distribution and F �t� rep-
resents its time variation. Apparently, the wave motion generated by such load is axially symmetric.

2.1. Governing equations

The equations of motion of an isotropic linear elastic material can be expressed in terms of the dis-
placements by use of NavierÕs equations

�k� l�rr � u� lr2u � q�u: �4�
The vector u corresponds to the displacements of the material, q is the mass density of the material and Ñ

indicates a vector di�erential operator; r � u is the divergence of u and r2u is the vector Laplacian of u. k
and l are the Lam�e constants expressed as

k � mE
1� m� � 1ÿ 2m� � ; l � E

2 1� m� � ;

where E is YoungÕs modulus and m is PoissonÕs ratio.
In the Helmholtz decomposition, the displacement ®eld of a material is expressed as the sum of the

gradient of a scalar potential u and the curl of a vector potential w as

u � ru�r� w: �5�
In an axi-symmetric motion, the vector potential w has a component wh only. This property reduces the

solution of the problem to solving only for scalar potentials. For convenience of notation, w will be written
instead of wh. Also, because of axi-symmetry, the displacement component in the h direction is equal to
zero. Denoting the displacement components in the r and z directions by u, and w, respectively, the relations
between the displacement components and the potentials (Achenbach, 1973) are

u � ou
or
ÿ ow

oz
; �6a�

Fig. 2. Half space in cylindrical coordinate.
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w � ou
oz
� 1

r
o�rw�

or
: �6b�

The relevant stress±displacement relations are

rzz � k� � 2l� ow
oz
� k

r
o ru� �
or

; �7a�

szr � l
ou
oz

�
� ow

or

�
: �7b�

By introducing Eq. (6) into Eq. (4), the above potentials satisfy the following axi-symmetric wave equa-
tions:

o2u
or2
� 1

r
ou
or
� o2u

oz2
� 1

c2
p

o2u
ot2

; �8�

o2w
or2
� 1

r
ow
or
� o2w

oz2
ÿ w

r2
� 1

c2
s

o2w
ot2

; �9�

where the constants cp and cs are de®ned as

cp � k� 2l
q

� �1=2

; cs � l
q

� �1=2

:

Eqs. (8) and (9) represent two basic types of waves; Compression (P) and Shear (S) waves respectively.
Because of the isotropy, these waves are uncoupled from one another with each one being characterized by
its speci®c velocity cp or cs.

2.2. Constructing the potentials

In order to make no assumptions about the way the two waves propagate in the r and z directions, the
potentials u and w will be derived from the basic equations of motions (8) and (9). First, the solutions will
be constructed for the scalar potential u. An elegant way to solve the second degree partial di�erential
equation Eq. (8) is by the use of Fourier transforms, which transform it from the time domain to the
frequency domain as

ÿx2û�r;z� � c2
p

o2û
or2

 
� 1

r
oû
or
� o2û

oz2

!
: �10�

The ``hat'' indicates that the expression is in the frequency domain. Solution of Eq. (10) can be obtained
by the method of separation of variables (Kreyszig, 1999). Since û is a function of the two orthogonal axes r
and z, the solution may consist of two independent functions of r and z

û�r; z� � R̂�r� � Ẑ�z� �11�

in which R̂�r� is a function of r only and Ẑ�z� is a function of z only. On substituting Eq. (11) into Eq. (10),
dividing through by c2

pR̂�r�Ẑ�z� and equating both sides of the equation with some arbitrary constant, say
ÿk2, two independent ordinary di�erential equations for R̂�r� and Ẑ�z� are obtained:

d2R̂�r�
dr2

� 1

r
dR̂�r�

dr
� k2R̂�r� � 0; �12�
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d2Ẑ�z�
dz2

� x2

c2
p

 
ÿ k2

!
Ẑ�z� � 0: �13�

If we set s � kr, then by use of the chain rule, Eq. (12) reduces to BesselÕs equation

d2R̂�s�
ds2

� 1

s
dR̂�s�

ds
� R̂�s� � 0: �14�

Solutions of Eq. (14) are the Bessel functions J0 and Y0 of the ®rst and second kind. However, Y0 be-
comes in®nite at r� 0, and since the oscillation is ®nite at the origin, the Y0 solution is dropped and the
solution of R̂�r� is left with

R̂�r� � A1J0�s� � A1J0 kr� �; �15�
where A1 is a constant to be determined from the boundary conditions and k represents the wavenumber in
the radial direction. To discretize the problem, introduction of some boundary conditions in the radial
direction is necessary. At the radial boundary r�R (far away from the source) the amplitude of the os-
cillation is considered to vanish. Hence, the non-trivial solution of Eq. (15) becomes

R̂�R� � J0�kR� � 0: �16�
This condition can be satis®ed at the in®nitely many positive roots am of the J0 function (Abramowitz

and Stegun, 1972). Eq. (16) now implies kR � am; thus k � km � am=R. Hence, the m functions,

R̂m�r� � A1mJ0�kmr� � A1mJ0

am

R
r

� �
; �17�

are solutions of the wave motion in the r direction (Eq. (12)) that vanishes at r�R. Each function cor-
responds to the mth normal mode of vibration. It can be noticed here that the spatial boundary conditions
at r�R inevitably leads to a discrete set of wavenumbers of the normal mode vibrations.

In the case of Ẑ, the corresponding solution of Eq. (13) is

Ẑmn�z� � A2meÿikpzmnz ; �18�

where A2m is a constant, determined from the boundary conditions, i is the complex number
�������ÿ1
p

and kpzmn

represents the wavenumber in the vertical direction z and is expressed as

kpzmn � x2
n

c2
p

 
ÿ k2

m

!1=2

; �19�

where cp is the compression wave velocity and xn is the angular frequency. Thus, the solution of Eq. (11) for
any given angular frequency xn is given by

ûmn�r; z� � Amneÿikpzmnz J0 kmr� �: �20�
In the same way, the solution of the potential of the S wave ŵ is

ŵmn�r; z� � Bmneÿikszmnz J1 kmr� �; �21�

where Bm is a constant, determined from the boundary conditions, J1 is the Bessel function of the ®rst kind
of order one and kszmn represents the vertical shear wavenumber and expressed as
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kszmn � x2
n

c2
s

�
ÿ k2

m

�1=2

; �22�

where cs is the shear-wave velocity. These functions, ûmn and ŵmn, are the eigenfunctions, or the charac-
teristic functions, of the vibrating system and the values km � am=R are their eigenvalues. The vibration
corresponding to m is called the mth normal mode.

Eqs. (20) and (21) represent waves decaying exponentially in the z direction and propagating horizon-
tally in a BesselÕs function mode. It is interesting to notice that travelling of the waves in the z direction is
analogous to that of the in plane structures (Rizzi and Doyle, 1992). However, in the horizontal direction,
the harmonic (sinusoidal) waves of the plane condition become decaying waves of BesselÕs function form in
the axi-symmetric case.

3. Spectral double summation analysis of wave motion

The principle of superposition constitutes the core of the spectral analysis method. Since Eqs. (8) and (9)
are linear and homogeneous, it follows from the superposition principle that the sum of in®nitely many
solutions ûmn and ŵmn (Eqs. (20) and (21)) are solutions of Eqs. (8) and (9), respectively. However, by use of
the discretization technique of Section 2, double summation over discrete angular frequencies xn with
n � 1; . . . ;N and wavenumbers km with m � 1; . . . ;M , is adequate to produce the overall vibration shape of
the system that vanishes at r�R. The general solutions of wave equations in an axi-symmetric system are
thus obtained by the superposition of all particular solutions to give

u�r; z; t� �
X

n

X
m

Amneÿikpzmnz J0 kmr� �eÿixnt; �23�

w�r; z; t� �
X

n

X
m

Bmneÿikszmnz J1 kmr� �eÿixnt: �24�

The limiting values of N and M can be determined from the amplitude spectrum of the time and spatial
distribution of the loading pulse. As it will be shown later, the summation over N frequencies can be carried
out by use of the fast Fourier transforms (FFT) and the summation over M wavenumbers can be done by
use of the Fourier±Bessel series.

The double summation approach over Fourier series constitutes an essential computational advantage of
this method over those, which rely on the numerical evaluation of integrals between zero and in®nity. This
type of integration involves singularities if the system has no damping or very sharp peaks for small
damping, and it requires considerable computational time and capacity.

On substituting Eqs. (23) and (24) into Eqs. (6) and then Eqs. (7), by application of the boundary
conditions, the displacements in an axi-symmetric medium can be expressed as

w r; z; t� �
u r; z; t� �

� �
�
X

n

X
m

P̂mnĜ km; z� � J0 kmr� �
J1 kmr� �

� �
eixnt �25�

in which P̂mn is the amplitude spectrum depends on the spatial and the time variation of the load pulse, and
Ĝ km; z� � represents the transfer function of the system. Eq. (25) reveals that summation over M wave-
numbers constructs the spatial dependency of the wave (oscillation shape) and summation over N fre-
quencies reconstructs the time dependency for that wave.

In the subsequent sections, the derivation of Ĝ km; z� � for layered axi-symmetric systems and the deter-
mination of P̂mn for a circular-transient load pulse is presented.
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4. Spectral axi-symmetric element formulation

The spectral element method (Doyle, 1997) is utilized for the formulation of axi-symmetric elements.
Two spectral elements were developed: a 2-noded layer element and a 1-noded half-space element.

4.1. 2-Noded layer element

The element can be pictorially presented to be consisting of two parallel circular surfaces within which
the wave is constrained to move, Fig. 3. The element is physically de®ned by two nodes with each having
one radial and one vertical degree of freedom. In the horizontal direction it extends to the distance R, where
the wave motion vanishes, (Eq. (16)).

The response at any point in the element is determined by the superposition of incident waves and the
re¯ected waves. An externally applied force generates the incident waves, which propagate, until they
encounter the vertical boundary where re¯ected waves develop. The propagating waves in the element
consist of a P-wave that travels with a speed cp and an S-wave that travels with a speed cs. To include both
the incident and re¯ected waves, the potentials at Eqs. (20) and (21) are adapted to include waves prop-
agating in the negative z direction as

ûmn r; z; km;xn� � � Amneÿikpzmnz
ÿ � Cmneÿikpzmn hÿz� ��J0 kmr� �; �26�

ŵmn r; z; km;xn� � � Bmneÿikszmnz
ÿ � Dmneÿikszmn�hÿz��J1 kmr� �; �27�

where h is the thickness of the element and kpzmn and kszmn are as de®ned in Eqs. (19) and (22), respectively.
The ®rst term inside the brackets, in both equations, represents the incident wave from z� 0 and the second
represents the re¯ected wave from the boundary at z� h. Upon substituting Eqs. (26) and (27) into Eqs. (6),
the following expressions for the radial and vertical displacements are obtained:

ûmn r; z; km;xn� � � ÿAmnkmeÿikpzmnz ÿ Cmnkmeÿikpzmn�hÿz�

�iBmnkszmneÿikszmnz ÿ iDmnkszmneÿikszmn�hÿz�

� �
J1 kmr� �; �28�

ŵmn r; z; km;xn� � � ÿiAmnkpzmneÿikpzmnz � iCmnkpzmneÿikpzmn�hÿz�

�Bmnkmeÿikszmnz � Dmnkmeÿikszmn�hÿz�

� �
J0 kmr� �: �29�

Let the radial and vertical displacements for the node at z� 0 equal u1 and w1 and for the node at z� h
equal u2 and w2, respectively, Fig. 3. By applying these boundary conditions on Eqs. (28) and (29), for the

Fig. 3. 2-noded axi-symmetric layer element.
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waves travelling in the z direction, a relationship between the coe�cients Amn, Bmn, Cmn and Dmn and the
nodal displacements can be obtained as

û1mn

ŵ1mn

û2mn

ŵ2mn

8>><>>:
9>>=>>; �

ÿkm ikszmn ÿkmeÿikpzmnh ÿikszmneÿikszmnh

ÿikpzmn km ikpzmneÿikpzmnh kmeÿikszmnh

ÿkmeÿikpzmnh ikszmneÿikszmnh ÿkm ÿikszmn

ÿikpzmneÿikpzmnh kmeÿikszmnh ikpzmn km

2664
3775

Amn

Bmn

Cmn

Dmn

8>><>>:
9>>=>>;: �30�

The coe�cients Amn, Bmn, Cmn and Dmn can be determined in terms of the four nodal displacements
û1nm; ŵ1nm; û2nm; ŵ2nmf gT

by inverting Eq. (30). The resulting system of equations can be written symbolically
as

SFmnf g � �Îmn�fD̂ISPmng; �31�
where SFmnf g represents the coe�cients vector, Îmn

� �
represents the inverse of the square matrix of Eq. (30)

and fD̂ISPmng represents the nodal displacements vector. The explicit form of matrix Îmn

� �
is not included

here because its determination requires a simple 4� 4 matrix inverse procedure. SFmnf g of Eq. (31), cor-
responds to the shape functions in the conventional ®nite element method. However, the shape functions
expressed by SFmnf g have been determined on the basis of the explicit solution of wave motion equations.
Because the mass distribution is expressed exactly, one element only is adequate for the simulation of a
whole layer. This feature constitute an essential advantage of the spectral element method over those, which
lump the mass at the layer interfaces (or nodes).

Following the Cauchy stress principle, the applied boundary tractions are related to the normal and
shear stresses at the boundaries by

Tk � skmnm; �32�
where the unit vector n is perpendicular to the surface and points outwards.

On substituting Eqs. (28) and (29) into Eqs. (7), and by use of Eq. (32), a relationship between the
traction and shape functions SFmnf g can be obtained as

T̂r1mn

T̂z1mn

T̂r2mn

T̂z2mn

8>><>>:
9>>=>>; � l

ÿ2ikmkpzmn ÿ k2
szmn ÿ k2

m

ÿ �
2ikmkpzmneÿikpzmnh ÿ k2

szmn ÿ k2
m

ÿ �
eÿikszmnh

k2
szmn ÿ k2

m

ÿ �
2ikmkszmn k2

szmn ÿ k2
m

ÿ �
eÿikpzmnh ÿ2ikmkszmneÿikszmnh

2ikmkpzmneÿikpzmnh k2
szmn ÿ k2

m

ÿ �
eÿikszmnh ÿ2ikmkpzmn k2

szmn ÿ k2
m

ÿ �
ÿ k2

szmn ÿ k2
m

ÿ �
eÿikpzmnh ÿ2ikmkszmneÿikszmnh ÿ k2

szmn ÿ k2
m

ÿ �
2ikmkszmn

266664
377775

�
Amn

Bmn

Cmn

Dmn

8>><>>:
9>>=>>;;

�33�

where l is the Lame constant. If the above 4� 4 matrix is denoted as Ĥmn

� �
, then upon substituting Eq. (31)

into Eq. (33), the following relationship between the traction and nodal displacements is obtained:

fT̂mng � �l�Ĥmn��Îmn��fD̂ISPmng: �34�
The expression between the parentheses in Eq. (34) relates the nodal displacements with the applied

tractions. As in the case of the ®nite element method, it represents the sti�ness matrix of the layer element.
The di�erence between a spectral element sti�ness matrix and a conventional ®nite element sti�ness matrix
is that the former is frequency and wavenumber dependent.
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Upon matrix multiplication of Ĥmn

� �
and Îmn

� �
, a complex and symmetric 4� 4 dynamic sti�ness matrix

is obtained as

�k̂mn� �
k11mn k12mn k13mn k14mn

k22mn ÿk14mn k24mn

k11mn ÿk12mn

sym k22mn

264
375; �35�

where

k11mn � l
Dmn

ikpzmn k2
szmn

ÿ� � k2
m

�
k2

mQ12Q21

ÿ � kszmnkpzmnQ11Q22

�	
;

k12mn � l
Dmn

kmkszmnkpzmn ÿ k2
szmn � 3k2

m

ÿ �
Q12Q22 ÿ 4eÿikpzmnheÿikszmnh� �

ÿkmQ11Q21 k2
mk2

szmn ÿ k4
m ÿ 2k2

pzmnk2
szmn

� �8<:
9=;;

k13mn � l
Dmn

�ÿ 2ikpzmn k2
szmn

ÿ � k2
m

�
k2

meÿikpzmnhQ21

ÿ � kszmnkpzmneÿikszmnhQ11

�	
;

k14mn � l
Dmn

2kszmnkpzmn k2
szmn

ÿ� � k2
m

�
eÿikpzmnhQ22

ÿ ÿ eÿikszmnhQ12

�	
;

k22mn � l
Dmn

ikszmn k2
szmn

ÿ� � k2
m

�
k2

mQ11Q22

ÿ � kszmnkpzmnQ12Q21

�	
;

k24mn � l
Dmn

�ÿ 2ikszmn k2
szmn

ÿ � k2
m

�
k2

meÿikszmnhQ11

ÿ � kszmnkpzmneÿikpzmnhQ21

�	
in which Dmn is the characteristic equation of the layer element de®ned as

Dmn � 2k2
mkpzmnkszmn 4eÿikpzmnheÿikszmnh

ÿ ÿ Q12Q22

�ÿ k2
pzmnk2

szmn

�
� k4

m

�
Q11Q21;

Q11 � 1ÿ eÿ2ikpzmnh; Q21 � 1ÿ eÿ2ikszmnh; Q12 � 1� eÿ2ikpzmnh; Q22 � 1� eÿ2ikszmnh:

4.2. 1-Noded half-space element

The 1-noded element is a special case of the 2-noded element. The 1-noded element behaves as a carrier
of energy out of the system, in which the waves travel in one direction and no re¯ection occurs, Fig. 4. In
this case, the wave Eqs. (26) and (27) reduce to Eqs. (20) and (21), and the coe�cients Cmn and Dmn in Eqs.
(28) and (29) are equal to zero. The kernels of the displacements û and ŵ are therefore

ûmn z; km;xn� � � ÿAmnkmeÿikpzmnz � iBmnkszmneÿikszmnz; �36�

ŵmn z; km;xn� � � ÿiAmnkpzmneÿikpzmnz � Bmnkmeÿikszmnz: �37�

Fig. 4. 1-noded half-space element.
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By solving Eqs. (36) and (37) for the coe�cients Amn and Bmn, the shape functions of the 1-noded element
can be obtained as

Amn

Bmn

� �
� 1

k2
m � kpzmnkszmn

ÿkm ikszmn

ÿikszmn km

� �
û1mn

ŵ1mn

� �
: �38�

Following the Cauchy stress principle, the tractions at node 1 are related to the stresses by

T̂z1mn � ÿr̂z1nm and T̂r1mn � ÿŝr1mn: �39�
On substituting Eqs. (36) and (37) into Eqs. (7), and substituting the results into Eq. (39), the following

relationships are obtained between the applied traction T̂z1mn and T̂r1mn and the coe�cients Amn and Bmn:

T̂r1mn

T̂z1mn

� �
� l

ÿ2ikmkpzmn ÿ k2
szmn ÿ k2

m

ÿ �
k2

szmn ÿ k2
m 2ikmkszmn

� �
Amn

Bmn

� �
: �40�

Upon substituting Amn and Bmn from Eq. (38) into Eq. (40), the 1-noded half-space element sti�ness
matrix can be derived as

T̂r1mn

T̂z1mn

� �
� l

Dmn

ikpzmn k2
sz � k2

m

ÿ �
2kpzmnkszmn ÿ k2

szmn � k2
m

ÿ �
km

sym ikszmn k2
sz � k2

m

ÿ �� �
û1mn

ŵ1mn

� �
; �41�

where Dmn � k2
m � kpzmnkszmn.

4.3. Spectral structural sti�ness matrix assemblage and system solution

The spectral structural sti�ness matrix K̂ km;xn� �� �
must be assembled at each frequency and wave-

number. Assemblage of K̂ km;xn� �� �
follows the same procedures as that of the conventional ®nite element

method (Cook, 1974). Same is valid for the assemblage of the global force vector. The global system of
equations to be solved is therefore

û1mn

ŵ1mn

..

.

ûlmn

ŵlmn

8>>>>><>>>>>:

9>>>>>=>>>>>;
K̂ km;xn� �

266664
377775 �

P̂r1mn

P̂z1mn

..

.

P̂rlmn

P̂zlmn

8>>>>><>>>>>:

9>>>>>=>>>>>;
; �42�

in which l represents an element number. The vector in the left hand side is the displacement vector and the
one in the right hand side is the force vector. The relationship between the force P̂zlmn and the tractions at
the node located, say for example, between element l and lÿ 1 is

P̂zlmn � A� T̂ lÿ1� �
z2mn

�
� T̂ l� �

z1mn

�
in which A is the area of the applied load. If a normal load is applied at node 1 of element 1 (at the surface),
which is usually the case, then P̂z1mn � A� T̂ �1�z1mn.

Similar to the conventional ®nite element sti�ness matrix, K̂ km;xn� �� �
is symmetric and banded. How-

ever, the spectral sti�ness matrix is complex and hence exhibits a damped behaviour in the time domain. Its
inverse denotes Ĝ km; z� � of Eq. (25).

By considering the solution of harmonic loading, the solution to the case of arbitrary time variation can
be obtained by means of the FFT. The solution to the spatial variation of the load can be introduced by
means of the Fourier±Bessel superposition. Solution of Eq. (42) for a load varying in space and time can be
obtained by the following procedure:
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· Upon assemblage of K̂ km;xn� �� �
, for a given frequency, the nodal displacement vector of Eq. (42) is com-

puted for a unit load applied at the node of interest. The process is repeated M times for each frequency.
· For the actually applied load P r; t� �, with spatial distribution S�r� and time variation F �t�, the actual

displacements are obtained by scaling the above computed displacements with Fourier coe�cient ampli-
tudes of the spatial and time distributions of the load. Summation over all M and N is necessary

u�r; z; t� �
X

n

X
m

ûmn z; km;xn� �F̂mJ1 kmr� �F̂neixnt; �43�

w�r; z; t� �
X

n

X
m

ŵmn z; km;xn� �F̂mJ0 kmr� �F̂neixnt; �44�

where F̂m represents the Fourier±Bessel coe�cients of S�r� and F̂n denotes the fast Fourier coe�cients of
F �t�. Their combination denotes P̂mn of Eq. (25).

4.4. Determination of F̂n and F̂m

The Fourier coe�cients F̂n can be obtained by means of FFT. The numerical scheme presented by
Brigham (1988), which is based on the Cooley±Tukey of the Base-2 FFT algorithm, is utilized. Here, the
discrete Fourier transform pair for F �t� and F̂n is given by

F tk� � � 1

N

X
n

F̂n
n

N � Dt

� �
eixntk � 1

N

X
n

F̂n
n

N � Dt

� �
ei2pnk=N ; �45a�

F̂n
n

N � Dt

� �
�
X

k

F tk� �eÿixntk �
X

k

F tk� �eÿi2pnk=N ; �45b�

where both k and n range from 0 to N ÿ 1, N is the number of samples to the Nyquist frequency, Dt is the
sampling interval and tk � k � Dt.

The F̂m components, on the other hand, can be obtained by use of the Fourier±Bessel theory. For a
cylindrical shape load (Fig. 5 (a)), with radius a and amplitude q, S�r� may be expressed as

S�r� � q for 06 r6 a;
0 for a < r6R;

�
�46�

where R is the radial dimension of the structure (R is taken relatively large to insure that u and w in Eqs.
(43) and (44) are equal to zero). Expressing S�r� by means of Fourier±Bessel series

S�r� �
X

m

F̂mJ0 kmr� �; �47�

the coe�cient F̂m for a cylindrical shape with height q� 1 and radius a can be determined analytically
(Kreyszig, 1999) as

F̂m � 2

R2J 2
1 am� �

Z a

0

rJ0

am

R
r

� �
dr: �48�

where, am denotes the roots of the Bessel function J0. After evaluation of the integral, Eq. (48) reduces to

F̂m � 2a
amRJ 2

1 am� � J1

am

R
a

� �
: �49�

The Fourier±Bessel series of the circular load of Fig. 5(a) for a� 0.15 m and R� 25 m is presented in Fig.
5(b) for M� 1700.
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5. Numerical implementation

The above-formulated axi-symmetric spectral elements for a layer and a half-space have been imple-
mented in the computer program layered media dynamics analysis (LAMDA) developed at TU-Delft. The
algorithm of the program is presented in Fig. 6.

The algorithm consists of three main steps: pre-processing (box 1), main program (boxes 2±9) and post-
processing (box 10). In the pre-processing step, the input force is transformed from the time domain to the
frequency domain. Here, F̂n is calculated based on Eq. (45b), by use of the FFT algorithm. The main
program involves two loops over N frequencies and M wavenumbers. For any given combination of fre-
quency and wavenumber the structural sti�ness matrix is formed and inverted (box 4). Displacements under
a unit load (on node 1 in the FWD case) are computed at each node, box 5. (The j between brackets in box 5
denotes the node number.) In box 7, summation over the wavenumbers is done to compute M modal
responses at a speci®c frequency xn. Here, F̂m is computed by means of Eq. (49). Summation over N fre-
quencies is done in box 9. In the post-processing step (box 10), inversion back to the time domain is done by
means of FFT (Eq. (45a)).

Fig. 5. (a) Load shape and (b) Fourier±Bessel distribution.
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6. Element veri®cation

Veri®cation of the axi-symmetric spectral element formulations and their numerical implementation has
been done by comparing the results with that of the ®nite element method and the multi-layered sti�ness
matrix method of Kausel and Roesset.

The ®nite element system CAPA-3D (Scarpas, 1993) was utilized for this purpose. It can perform static/
dynamic linear/non-linear analysis. A typical pavement structure consisting of three layers; asphalt, subbase

Fig. 6. LAMDA computer program ¯ow chart.
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and subgrade was chosen for this purpose. The geometrical and material properties are presented in Table
1. The pavement is subjected to a 50 kN FWD load pulse with 25 ms duration and 150 mm radius.

Table 1

Geometrical and material properties

Thickness (mm) E modulus (MPa) PoissonÕs ratio Mass density �kg=m3�
Asphalt 150 1000 0.35 2300

Subbase 250 200 0.35 2000

Subgrade 1 100 0.35 1500

Fig. 7. FWD load pulse and its spectrum.

Fig. 8. Finite element mesh.
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In LAMDA, the geometry was simulated by the use of two layer elements and one half-space element.
The time history of the load pulse F �t� and its frequency spectrum are shown in Fig. 7. The spatial dis-
tribution S�r� is given by the cylindrical shape shown in Fig. 5(a) with radius a� 150 mm.

In the ®nite element system CAPA-3D, the geometry was simulated by use of 1040, 20 noded brick
elements. Because of the required ®nite geometry, the structure was assumed to extend 6 m in the horizontal
direction and 15.4 m in the vertical direction. Also, because of axi-symmetry, only a quadrant of the
pavement was simulated. The radius of the loaded area was 150 mm. The detailed mesh surrounding the
loaded area is shown in Fig. 8.

The oscillation of the pavement surface, at several geophone locations, as computed by CAPA-3D is
presented in Fig. 9(a) and by LAMDA in Fig. 9(b). It can be seen that the results are similar except that in
the ®nite element analysis some disturbances appear at the end of the response, which can be attributed to
the re¯ections at the boundaries of the mesh.

Fig. 9. Pavement surface oscillations: (a) CAPA-3d and (b) LAMDA.
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The advantage of the spectral elements method lies in its moderate input and computational require-
ments compared with the ®nite element method. For the above analyses, the computational requirements
for both methods are summarized in Table 2.

Table 2

Computational requirements

Method Mesh size Computational time Computer type

Finite elements 1040 3 h Alpha station 200

Spectral elements 3 50 s Intel 300 MHz

Table 3

Geometrical and material properties of Foinquinos et al. (1995)

Layer Thickness (cm) YoungÕs Modulus (MPa) Shear-wave velocity (m/s)

Asphalt 15 3013 762

Base 30 483 305

Subgrade Variable 124 152

Fig. 10. LAMDA results: (a) Bed rock at 6.1 m and (b) no bed rock.
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The results obtained from the spectral element method had also been compared with the multi-layered
sti�ness matrix method developed by Kausel and Roesset (1981). For this purpose, the work presented by
Foinquinos et al. (1995), which involves comprehensive use of the method to FWD test simulation, is
utilized. A ¯exible pavement structure consisting of three layers; asphalt, base and subgrade was simulated.
The material elastic properties and layer thickness are presented in Table 3. An FWD load pulse of 90 kN
and 30 ms was used as input. Two di�erent subgrade conditions were analysed; rockbed at 6 m depth and
in®nite soft soil. LAMDA results for both cases are presented in Fig. 10. A comparison with those of Fig. 3
of Foinquinos, shows that they are identical (same format as that in Foinquinos et al. (1995) was used for
closer comparison).

7. Conclusions

The spectral element method has been shown to be an e�cient computational tool for analyzing the
dynamic response of multi-layered systems when subjected to a transient load pulse. Comparison with ®nite
element analysis of some typical pavements under FWD load action and with computational results ob-
tained by use of the layer sti�ness matrix method of Kausel and Roesset, the axi-symmetric spectral ele-
ments, developed and implemented in this research work, have shown to be accurate.

The main advantage of the spectral element method over other layered media formulations lies on its
computational e�ciency and robustness. The double summation approach of the spectral element evades
the inconvenience of the numerical evaluation of contour integration between zero and in®nity, which
results, in many practical applications, to numerical oscillations.

Because waves are described exactly in the spectral element method, one element is adequate to describe
a whole layer. Consequently, the size of the mesh of a layered structure is only as large as the number of the
layers involved. This reduces the computational requirements dramatically and encourages utilization of
this method for parameter identi®cation purposes, which will be addressed in a subsequent contribution.
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