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Abstract

This contribution deals with the use of spectral analysis as a means of analysing the dynamic behaviour of the axially
symmetric multi-layered systems as a result of a transient force. The objective of this research work is to develop an
accurate and computationally efficient forward tool suitable for solving inverse problems. The spectral element tech-
nique is utilized. Details of the mathematical derivation, implementation and verification of newly developed axi-
symmetric and half-space spectral elements are presented. It is shown that the suitability of the spectral element method
to such a problem encompasses in its ability to model a whole layer without the need for subdivisions. As a conse-
quence, the size of the modelled structure becomes as large as the number of the layers involved. This reduces the
computational requirements substantially and hence enables efficient utilization of the method in iterative algorithms
for solving inverse problems. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Non-destructive testing for parameter identification and structural evaluation is a widely used technique
in many fields. Parameter identification problems involve forward as well as inverse techniques. Solving the
forward problem requires structural and material models to predict the values of some response quantities
(e.g. displacements) from the given values of the model parameters. Solving the inverse problem requires
techniques to infer the values of the model parameters from measured values of the response quantities. In
this paper, the forward model will be addressed. In a subsequent paper, the use of the forward model for
parameter identification will be presented.

The objective of this research work is to develop an accurate and computationally efficient forward tool
for analysing the dynamic behaviour of layered media. This tool will be utilized, in a later work, in an
iterative algorithm for solving inverse problems. As an application, the case of pavement response under
the action of a falling weight deflectometer (FWD) load pulse is examined.
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Fig. 1. Scheme of FWD instrument.

For roads and airfields the FWD (Fig. 1), is a commonly used non-destructive dynamic test for para-
meter identification of pavement layers. The FWD instrument consists of a large mass that is dropped from
a certain height onto a set of rubber buffers mounted to a circular footplate (Van Gurp, 1995). The resulting
impact approximates load effects of a truck wheel. Deflection sensors are used to record the vertical dis-
placements at the surface at various radial distances from the loading centre. Maintenance strategies, in
many countries all over the world, are based on the results of this test.

Commonly, either analytical or numerical methods are used for solving dynamic problems. Analytical
methods usually imply exact solutions of wave propagation. They can be efficient for both forward and
backward analyses. However, due to their nature, analytical solutions typically apply only to specific ge-
ometry and boundary conditions. In practice, various layer combinations and boundary conditions are
encountered. Also, different instruments of different load characteristics are used in testing. All these render
the analytical methods inept for utilization in practical applications.

Numerical methods and, in particular, the finite element method, is a general tool that can be used for
the analysis of complex geometries and boundary conditions. However, and in spite of the recent advances
in processor technology, powerful computing facilities are necessary even for problems of moderate size.
This renders the finite element method difficult for utilization in inverse problems.

Over the years, many techniques have been developed for the analysis of wave motions in layered media.
They involve combination of analytical and numerical solutions. Important work has been done by
Thomson (1950) and Haskell (1953), who developed the layer transfer matrix method. For a given layer
bounded between two interfaces, j and j 4 1, this method relates the amplitudes of force vector {P} and
displacement vector {U } at interface j to those at interface j + 1 by

l:]j+] _ [Hn Ho (:], (1)
P Hy Hxn|| P J’
where H;; are submatrices of the transfer matrix (Haskell, 1953). Kausel and Roesset (1981) have further

developed this method by introducing layer stiffness matrices analogous to those used in the finite element
method by rearranging Eq. (1) to appear as

Tt 25002
Py HynH; Hyy — Hy  —HxnHp, Ui
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Although this method adds no accuracy to the transfer matrix method, it is more efficient for numerical
implementation due to the symmetry of the stiffness matrix (unlike that of the transfer matrix method).
Kausel and Roesset provided continuous as well as semi-discrete solutions to the resulting system of dy-
namic equations. The continuous solutions describe wave motions in a layer in an exact form by solving a
set of transcendental equations. However, these solutions exhibit, in some applications, instabilities due to
the numerical complications involved in implementing infinite integration in computer codes. For example,
in case of sharp variations in the stiffness of a layered system, a numerical oscillatory behaviour may occur
during the contour integration of the displacement functions between zero and infinity in the spatial do-
main (Foinquinos et al., 1995). This occurs due to the singularities and/or the sharp peaks (depending on
damping) that are encountered in the process.

A semi-discrete solution to such problems was first introduced by Lysmer (1970), who developed the
lumped mass method for the analysis of Rayleigh waves in multi-layered elastic media. Later, this
method was generalized by Kausel and Roesset (1981). Here, the wave motion is described exactly in the
horizontal direction and approximately, by linear interpolation between the layer interfaces, in the ver-
tical direction. The basic principle of the method is to divide the layer into sublayers with thickness
smaller than the wavelengths of interest. This enables the substitution of the transcendental equations of
the continuous technique with simple eigenvalue problems, which can be solved by standard techniques.
This results to a more efficient numerical implementation. The layer stiffness matrix in this case is ex-
pressed as

K = A2+ Bk + G — ’M, (3)

where k is the wavenumber, w is the frequency of excitation, A, B, G are matrices of the material elastic
properties and M is the lumped mass matrix. (Explicit expressions for the A, B, G and M matrices are given
by Kausel and Roesset (1981)). Because the mass of the layer is lumped on the element’s upper and lower
interfaces, many elements are necessary for accurate description of the distribution of the mass.

Both the continuous and the semi-discrete techniques are suitable for the analysis of the far field
problems. Tassoulas and Kausel (1983) have further extended these techniques to account for wave motions
in finite regions with inhomogeneous boundary conditions caused by spatially finite loading. This method
entails introducing specially developed elements under the loaded region and connecting them horizontally
to the normal layer elements.

Because of the computational robustness of the semi-discrete formulation, compared with that of
the continuous, it has been utilized in many engineering applications. However, the requirements for the
subdivision of the layer elements and the introduction of additional elements for the simulation of the
inhomogeneous regions result to a large system of equations that are to be solved. As a consequence, large
amounts of computer time are needed, rendering these formulations “computationally expensive” for
utilization in iterative schemes for solving inverse problems.

The spectral element method developed by Doyle (1997) combines elegantly the exact solution of wave
motions with the finite element organization of the system matrices. In this, the system is solved by double
summation over the involved frequencies and the wavenumbers (Rizzi and Doyle, 1992), alleviating thus
the inconvenience of the numerical implementation of infinite integration. The mass distribution is mod-
elled exactly and hence only one element is sufficient to describe a whole layer without the need for sub-
divisions. This makes the resulting system of dynamic equations very small and hence computationally
efficient. Also, the method is suitable for both near field as well as far field problems, which makes it
appropriate for FWD analysis.

In this article, the mathematical derivation, implementation and verification of a newly developed axi-
symmetric layer spectral element and a half-space spectral element are presented. The elements are utilized
for the analysis of the dynamic behaviour of pavement structures under the impact of the FWD load pulse.
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2. Wave motion in axi-symmetric systems

To describe wave motions in a solid medium, a homogeneous isotropic half-space z > 0 in the cylindrical
co-ordinate system shown in Fig. 2 is considered. The system is assumed to be subjected at z=0 to a
symmetrical normal load P(r,t) = S(r)F(¢) in which S(r) represents its spatial distribution and F(¢) rep-
resents its time variation. Apparently, the wave motion generated by such load is axially symmetric.

2.1. Governing equations

The equations of motion of an isotropic linear elastic material can be expressed in terms of the dis-
placements by use of Navier’s equations

(24 WVV -u+ uVu = pii. (4)

The vector u corresponds to the displacements of the material, p is the mass density of the material and V
indicates a vector differential operator; V - u is the divergence of u and V?u is the vector Laplacian of u. A
and u are the Lamé constants expressed as

B vE - E
Tarwi-2y MTaary

where E is Young’s modulus and v is Poisson’s ratio.
In the Helmholtz decomposition, the displacement field of a material is expressed as the sum of the
gradient of a scalar potential ¢ and the curl of a vector potential \ as

u=Ve+V x|. (5)

In an axi-symmetric motion, the vector potential y has a component yyy only. This property reduces the
solution of the problem to solving only for scalar potentials. For convenience of notation, s will be written
instead of 4. Also, because of axi-symmetry, the displacement component in the 0 direction is equal to
zero. Denoting the displacement components in the » and z directions by u, and w, respectively, the relations
between the displacement components and the potentials (Achenbach, 1973) are

_0p Oy
"o (62)

Fig. 2. Half space in cylindrical coordinate.
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The relevant stress—displacement relations are
ow A 0(ru)
0, = ()v =+ 2'11) g =+ ; ar y (73)
Ou Oow

By introducing Eq. (6) into Eq. (4), the above potentials satisfy the following axi-symmetric wave equa-
tions:

o 10p ¢ 1%
wtra e s aa (®)
0? 10 0? 1 @

w_;’_ _lﬁ+_l//_£:__l//7 (9)

r- r Oor 0z r- Cg
o ror o2 P2 P

where the constants ¢, and ¢, are defined as

J+2u 1/2 " 1/2
cp = , =1\ - .
P P

Egs. (8) and (9) represent two basic types of waves; Compression (P) and Shear (S) waves respectively.
Because of the isotropy, these waves are uncoupled from one another with each one being characterized by
its specific velocity ¢, or c;.

2.2. Constructing the potentials

In order to make no assumptions about the way the two waves propagate in the r and z directions, the
potentials ¢ and y will be derived from the basic equations of motions (8) and (9). First, the solutions will
be constructed for the scalar potential ¢. An elegant way to solve the second degree partial differential
equation Eq. (8) is by the use of Fourier transforms, which transform it from the time domain to the
frequency domain as

¢ 10¢p 0%*¢
2 2
— = S AT AT A N 10
@ p(rz) “ < or? + r or + 0z2 (10)
The “hat” indicates that the expression is in the frequency domain. Solution of Eq. (10) can be obtained

by the method of separation of variables (Kreyszig, 1999). Since ¢ is a function of the two orthogonal axes r
and z, the solution may consist of two independent functions of r and z

¢(r.z) = R(r) - Z(2) (11)

in which R(r) is a function of r only and Z(z) is a function of z only. On substituting Eq. (11) into Eq. (10),
dividing through by cf)R(r)Z (z) and equating both sides of the equation with some arbitrary constant, say
—k?, two independent ordinary differential equations for R(r) and Z(z) are obtained:

d*R(r) 1dR(r)

— 2 P =
ar - dr + k R(}") 0, (12)
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¢26) <w—2 - k2> 2(z) = 0. (13)

2 2
dz e

If we set s = kr, then by use of the chain rule, Eq. (12) reduces to Bessel’s equation

d*R(s) L1 dR(s)
ds? s ds

Solutions of Eq. (14) are the Bessel functions J, and Y| of the first and second kind. However, Y; be-
comes infinite at r=0, and since the oscillation is finite at the origin, the Y, solution is dropped and the
solution of R(r) is left with

+R(s) = 0. (14)

k(l") :AlJ()(S) :Alj()(kl”), (15)

where A4, is a constant to be determined from the boundary conditions and k represents the wavenumber in
the radial direction. To discretize the problem, introduction of some boundary conditions in the radial
direction is necessary. At the radial boundary r= R (far away from the source) the amplitude of the os-
cillation is considered to vanish. Hence, the non-trivial solution of Eq. (15) becomes

R(R) = Jy(kR) = 0. (16)

This condition can be satisfied at the infinitely many positive roots o, of the Jy function (Abramowitz
and Stegun, 1972). Eq. (16) now implies kR = a,,; thus k = k,, = «,/R. Hence, the m functions,

R Oy
Ro(r) = Aundo (k) = Avdo (;r) , (17)

are solutions of the wave motion in the r direction (Eq. (12)) that vanishes at r= R. Each function cor-
responds to the mth normal mode of vibration. It can be noticed here that the spatial boundary conditions
at r= R inevitably leads to a discrete set of wavenumbers of the normal mode vibrations.

In the case of Z, the corresponding solution of Eq. (13) is

Zyn(2) = Ape ke | (18)

where 45, is a constant, determined from the boundary conditions, i is the complex number v —1 and k.,
represents the wavenumber in the vertical direction z and is expressed as

) 1/2
kpzmn = <% - ki) ) (19)
p

where ¢, is the compression wave velocity and o, is the angular frequency. Thus, the solution of Eq. (11) for
any given angular frequency w, is given by

P (7,2) = A€ 5 Jo (o). (20)
In the same way, the solution of the potential of the S wave lp is
U (7,2) = Bune™ S Jy (i), (21)

where B,, is a constant, determined from the boundary conditions, J; is the Bessel function of the first kind
of order one and k., represents the vertical shear wavenumber and expressed as
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) 1/2
kszmn == <w_2n - k,Zn) 5 (22)
N

where c; is the shear-wave velocity. These functions, ¢,,, and v, , are the eigenfunctions, or the charac-
teristic functions, of the vibrating system and the values k,, = a,,/R are their eigenvalues. The vibration
corresponding to m is called the mth normal mode.

Egs. (20) and (21) represent waves decaying exponentially in the z direction and propagating horizon-
tally in a Bessel’s function mode. It is interesting to notice that travelling of the waves in the z direction is
analogous to that of the in plane structures (Rizzi and Doyle, 1992). However, in the horizontal direction,
the harmonic (sinusoidal) waves of the plane condition become decaying waves of Bessel’s function form in
the axi-symmetric case.

3. Spectral double summation analysis of wave motion

The principle of superposition constitutes the core of the spectral analysis method. Since Egs. (8) and (9)
are linear and homogeneous, it follows from the superposition principle that the sum of infinitely many
solutions ¢,,, and ¥,,, (Eqs. (20) and (21)) are solutions of Egs. (8) and (9), respectively. However, by use of
the discretization technique of Section 2, double summation over discrete angular frequencies w, with
n=1,...,N and wavenumbers k,, withm = 1,... M, is adequate to produce the overall vibration shape of
the system that vanishes at r = R. The general solutions of wave equations in an axi-symmetric system are
thus obtained by the superposition of all particular solutions to give

([)(7"7 z, t) = ZZAmne*ikp;ngJO (kml/.)e*i(/)nl7 (23)
Ust) = 35 B e e, ”

The limiting values of N and M can be determined from the amplitude spectrum of the time and spatial
distribution of the loading pulse. As it will be shown later, the summation over N frequencies can be carried
out by use of the fast Fourier transforms (FFT) and the summation over M wavenumbers can be done by
use of the Fourier—Bessel series.

The double summation approach over Fourier series constitutes an essential computational advantage of
this method over those, which rely on the numerical evaluation of integrals between zero and infinity. This
type of integration involves singularities if the system has no damping or very sharp peaks for small
damping, and it requires considerable computational time and capacity.

On substituting Egs. (23) and (24) into Egs. (6) and then Egs. (7), by application of the boundary
conditions, the displacements in an axi-symmetric medium can be expressed as

fiez ) =2 S htta{ i e 25)

in which P, is the amplitude spectrum depends on the spatial and the time variation of the load pulse, and
G(km,z) represents the transfer function of the system. Eq. (25) reveals that summation over M wave-
numbers constructs the spatial dependency of the wave (oscillation shape) and summation over N fre-
quencies reconstructs the time dependency for that wave.

In the subsequent sections, the derivation of G(k”17z) for layered axi-symmetric systems and the deter-

mination of P, for a circular-transient load pulse is presented.
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4. Spectral axi-symmetric element formulation

The spectral element method (Doyle, 1997) is utilized for the formulation of axi-symmetric elements.
Two spectral elements were developed: a 2-noded layer element and a 1-noded half-space element.

4.1. 2-Noded layer element

The element can be pictorially presented to be consisting of two parallel circular surfaces within which
the wave is constrained to move, Fig. 3. The element is physically defined by two nodes with each having
one radial and one vertical degree of freedom. In the horizontal direction it extends to the distance R, where
the wave motion vanishes, (Eq. (16)).

The response at any point in the element is determined by the superposition of incident waves and the
reflected waves. An externally applied force generates the incident waves, which propagate, until they
encounter the vertical boundary where reflected waves develop. The propagating waves in the element
consist of a P-wave that travels with a speed ¢, and an S-wave that travels with a speed ¢,. To include both
the incident and reflected waves, the potentials at Eqgs. (20) and (21) are adapted to include waves prop-
agating in the negative z direction as

(rbmn (r,z, Ko, (Un) _ (Am”e—ikpzmnz + C”me—ik,,z,,m(h—z))Jo(km,,)7 (26)

lﬁmn (7,2, b, ) = ( ane—ikyzmnz + Dmnefik.\vzmn(hfﬂ) Jy (k). (27)

where /1 is the thickness of the element and k,.,,, and k,.,, are as defined in Eqgs. (19) and (22), respectively.
The first term inside the brackets, in both equations, represents the incident wave from z =0 and the second
represents the reflected wave from the boundary at z= /. Upon substituting Eqs. (26) and (27) into Eqgs. (6),
the following expressions for the radial and vertical displacements are obtained:

>J1 (knr), (28)

—Apn kme—lkp;nmz —Cy kme—lkpmu(h—Z)

Umn (I", zZ, km7 (Un) = < —I—iB,,mkszmneiikmmz o iDmnkszmnefiksm,,(hfz)

~ *iAmnk zmne_ikpzmnz + i(jmnk zmne_ikpzmn (h=2)
Winn (r727 ko, Q),,) = ( 4B pk e Kszmnz +D kpe—iks:mn(h—z) Jo (km}"). (29)

Let the radial and vertical displacements for the node at z=0 equal u; and w; and for the node at z=/
equal u, and w,, respectively, Fig. 3. By applying these boundary conditions on Eqgs. (28) and (29), for the

- _— / \ » X
< 0 -
— w, <Y -
i B Tl
h
l y
///(/‘_— =}u2 \\\\\\ \\>
[ 2 S
v
Z

Fig. 3. 2-noded axi-symmetric layer element.
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waves travelling in the z direction, a relationship between the coefficients A4,,,, By, C., and D,,, and the
nodal displacements can be obtained as

il Imn _km ikszmn _kmeilkpzmnh _ikszmneilkum”h Amn
wlmn _ikpzmn km ikpzmneiikpzmnh kmeiikm’mh an (30)
122mn - km € ﬂklfzmn h ikszmn e_ilkmmh - km - ikszmn Cmn
1’?}Zmn - lkpzmn € e km € ikl 1kpzmn km D mn

The coefficients A4,,,, By, Cn, and D,,, can be determined in terms of the four nodal displacements
{0y Winm, Wonm wz,,m}T by inverting Eq. (30). The resulting system of equations can be written symbolically
as

{SEnn} = [imn}{DISPmn}ﬂ (31)

where A{SF,,,,,} represents the coefficients vector, [fm,,] represents the inverse of the square matrix of Eq. (30)
and {DISP,,,} represents the nodal displacements vector. The explicit form of matrix [imn] is not included
here because its determination requires a simple 4 x 4 matrix inverse procedure. {SF,,} of Eq. (31), cor-
responds to the shape functions in the conventional finite element method. However, the shape functions
expressed by {SF,,, } have been determined on the basis of the explicit solution of wave motion equations.
Because the mass distribution is expressed exactly, one element only is adequate for the simulation of a
whole layer. This feature constitute an essential advantage of the spectral element method over those, which
lump the mass at the layer interfaces (or nodes).

Following the Cauchy stress principle, the applied boundary tractions are related to the normal and
shear stresses at the boundaries by

Tk = TimMp, (32)

where the unit vector n is perpendicular to the surface and points outwards.
On substituting Egs. (28) and (29) into Egs. (7), and by use of Eq. (32), a relationship between the
traction and shape functions {SF,,, } can be obtained as

. ik (R —R2) ik et (K2, — K2)e ke
il K, — ) ik ke (K2, — 2)e ot 2ik ke ot
Tow [P ke e (R, — K2 )b ik (K2, — k%)
T ) |, et ket (R B) bk

A

X 2”’” ,
-
Di’ﬂn
(33)

where u is the Lame constant. If the above 4 x 4 matrix is denoted as [I:Im,,}, then upon substituting Eq. (31)
into Eq. (33), the following relationship between the traction and nodal displacements is obtained:

{Ton} = (][] {DISP, . }. (34)

The expression between the parentheses in Eq. (34) relates the nodal displacements with the applied
tractions. As in the case of the finite element method, it represents the stiffness matrix of the layer element.
The difference between a spectral element stiffness matrix and a conventional finite element stiffness matrix
is that the former is frequency and wavenumber dependent.
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Upon matrix multiplication of [ﬁm ] and |/, [ ,,m] a complex and symmetric 4 x 4 dynamic stiffness matrix
is obtained as

kllmn kllmn kl3mn k14mn

7 k22 —k 14 k24
kmn — mn mn mn , 35
[ ] 11mn —k 12mn ( )
sym k22mn
where

kllmn = AL { kpzmn (kszzmn + kyzn) (k,ZnQIZQZI + k,vzmnkpzanHQZZ) }7

kmkxzmn kpzmn ( k2 + 3k12n) (Q12Q22 - 4eiikp:mnheiik‘\vzmnh)

iomn = ALmn —kaIIQgZ”&kmkfzmn — Ky = 2k£m"k§zm”) |
- ALM { = 20 (K2, + K2) (275 01 4 ke R O ) ),
Brims = {2k (o + 1) (67025 — €401 .

Ko = {lkszm,, (K2 + 12) (k20102 + kcmkimn 012021 1,

k24m”l = A_ { - Zlkszmn (kszzmn + krzn) (k2 o Qll + kszmnkpzmne Hyennh QZI)}
in which 4,,, is the characteristic equation of the layer element defined as

2 —ikpemnht 5 —ikszmnh 2
mn =2k kpzmnkszmn (46 pnte T — QIZQZZ) - ( pz,nnkszrnn )Q11Q217
Qll —1- e—21kpzmnh’ Q21 —1— e—2lkxz,,,,,h7 le -1 4 e—21kpzm,,h’ Q22 =1 4 e—21k.v:,,,,,h.

4.2. 1-Noded half-space element

The 1-noded element is a special case of the 2-noded element. The 1-noded element behaves as a carrier
of energy out of the system, in which the waves travel in one direction and no reflection occurs, Fig. 4. In
this case, the wave Eqs. (26) and (27) reduce to Egs. (20) and (21), and the coefficients C,,, and D,,, in Egs.
(28) and (29) are equal to zero. The kernels of the displacements & and w are therefore

~ —ikpemn ; —ikszn
Umn (Zv kma CO,,) = _Amnkme pemn + 1ankszmne Za (36)
A —ikpem —ikszmn
Winn (27 km7 wn) = 1Amr1k mn€ pemn + ankme Z~ (37>
i _\ul o RN » X
e \LW _________ "
________ 1 T
Yy
v
Z

Fig. 4. 1-noded half-space element.
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By solving Eqs. (36) and (37) for the coefficients 4,,, and B,,,, the shape functions of the 1-noded element
can be obtained as

A mn _ 1 - km ikxzmn i 1mn
{an } B k,zn + kPZmnkszmﬂ |:_ikszmn km :| { 1’T/lmn } (38)
Following the Cauchy stress principle, the tractions at node 1 are related to the stresses by
Tzlmn = *6zlnm and 7Awrlmn - *%rlmn- (39)

On substituting Egs. (36) and (37) into Egs. (7), and sgbstituting the results into Eq. (39), the following
relationships are obtained between the applied traction 7.,, and 7,1, and the coefficients 4,,, and B,,:
f;lm,, _ _2ikmkpzmn - (kszzm,, - k,%l) Amn
{ T } - “[ R — K2 ik )\ Bun J (40)

szmn

Upon substituting A4, and B, from Eq. (38) into Eq. (40), the 1-noded half-space element stiffness
matrix can be derived as

{ frlmn } _ L |:ikpzmn (kgz + krzn) (2kpzmnkszmn - kfzmn + k,zn)km:| { ﬁlmn } (41)

Tzlmn Amn sym ikszmn (kgz + k,%z) Wlmn

2
where Amn = km + kpzmﬂkszmn'

4.3. Spectral structural stiffness matrix assemblage and system solution

The spectral structural stiffness matrix [K (km,wn)] must be assembled at each frequency and wave-
number. Assemblage of [K(k,,w,)] follows the same procedures as that of the conventional finite element
method (Cook, 1974). Same is valid for the assemblage of the global force vector. The global system of

equations to be solved is therefore

Ulmn F:rlmn
Wimn F)zlmn
Rkan) | =4 & 3, (42)
Uimn Pirlmn
Wimn lemn

in which / represents an element number. The vector in the left hand side is the displacement vector and the
one in the right hand side is the force vector. The relationship between the force P, and the tractions at
the node located, say for example, between element / and / — 1 is

in which 4 is the area of the applied load. If a normal load is applied at node 1 of element 1 (at the surface),
which is usually the case, then P, = 4 x 7! .

Similar to the conventional finite element stiffness matrix, [K (km, @,)] is symmetric and banded. How-
ever, the spectral stiffness matrix is complex and hence exhibits a damped behaviour in the time domain. Its
inverse denotes G(k,,,z) of Eq. (25).

By considering the solution of harmonic loading, the solution to the case of arbitrary time variation can
be obtained by means of the FFT. The solution to the spatial variation of the load can be introduced by
means of the Fourier—Bessel superposition. Solution of Eq. (42) for a load varying in space and time can be

obtained by the following procedure:
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e Upon assemblage of [K (ki wn)], for a given frequency, the nodal displacement vector of Eq. (42) is com-
puted for a unit load applied at the node of interest. The process is repeated M times for each frequency.

e For the actually applied load P(r,¢), with spatial distribution S(») and time variation F(¢), the actual
displacements are obtained by scaling the above computed displacements with Fourier coefficient ampli-
tudes of the spatial and time distributions of the load. Summation over all M and N is necessary

u(r,z,t) Z Zu,,m Z, ki, ) F 1 (km r)F el (43)

w(r,z,t) = Z Zwmn (z, k) w,,)ﬁmJo(kmr)ﬁnei‘“”’, (44)

n m

where £, represents the Fourier-Bessel coeflicients of S(r) and F;, denotes the fast Fourier coefficients of
F(¢). Their combination denotes P,, of Eq. (25).

4.4. Determination of F, and F,,

The Fourier coefficients F, can be obtained by means of FFT. The numerical scheme presented by
Brigham (1988), which is based on the Cooley-Tukey of the Base-2 FFT algorithm, is utilized. Here, the
discrete Fourier transform pair for F(¢) and F, is given by

- %;Fn (N TzAt)ei“””k = %;Fn (ﬁ)em”kﬂv? (45a)
Fya) = LF e = SR (e, w
k

where both k and n range from 0 to N — 1, N is the number of samples to the Nyquist frequency, At is the
sampling interval and # =k - Atz.

The F,, components, on the other hand, can be obtained by use of the Fourier—Bessel theory. For a
cylindrical shape load (Fig. 5 (a)), with radius ¢ and amplitude ¢, S(r) may be expressed as

_Jgq for0<r<a,
S(r)_{O for a < r<R, (46)

where R is the radial dimension of the structure (R is taken relatively large to insure that # and w in Egs.
(43) and (44) are equal to zero). Expressing S(r) by means of Fourier—Bessel series

- ZFmJO(kmr)’ (47)

the coefficient £}, for a cylindrical shape with height ¢ =1 and radius « can be determined analytically
(Kreyszig, 1999) as

Fm:%/uﬂo(]e )dr (48)

where, o, denotes the roots of the Bessel function J,. After evaluation of the integral, Eq. (48) reduces to

. 2a

o
By =—= (). 4
" oc,”Rle(am)Jl( R a) (49)

The Fourier—Bessel series of the circular load of Fig. 5(a) for ¢ =0.15 m and R =25 m is presented in Fig.
5(b) for M =1700.
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Fig. 5. (a) Load shape and (b) Fourier—Bessel distribution.

5. Numerical implementation

The above-formulated axi-symmetric spectral elements for a layer and a half-space have been imple-
mented in the computer program layered media dynamics analysis (LAMDA) developed at TU-Delft. The
algorithm of the program is presented in Fig. 6.

The algorithm consists of three main steps: pre-processing (box 1), main program (boxes 2-9) and post-
processing (box 10). In the pre-processing step, the input force is transformed from the time domain to the
frequency domain. Here, F, is calculated based on Eq. (45b), by use of the FFT algorithm. The main
program involves two loops over N frequencies and M wavenumbers. For any given combination of fre-
quency and wavenumber the structural stiffness matrix is formed and inverted (box 4). Displacements under
a unit load (on node 1 in the FWD case) are computed at each node, box 5. (The j between brackets in box 5
denotes the node number.) In box 7, summation over the wavenumbers is done to compute M modal
responses at a specific frequency w,. Here, F,, is computed by means of Eq. (49). Summation over N fre-
quencies is done in box 9. In the post-processing step (box 10), inversion back to the time domain is done by
means of FFT (Eq. (45a)).
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Fig. 6. LAMDA computer program flow chart.
6. Element verification

Verification of the axi-symmetric spectral element formulations and their numerical implementation has
been done by comparing the results with that of the finite element method and the multi-layered stiffness
matrix method of Kausel and Roesset.

The finite element system CAPA-3D (Scarpas, 1993) was utilized for this purpose. It can perform static/
dynamic linear/non-linear analysis. A typical pavement structure consisting of three layers; asphalt, subbase
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and subgrade was chosen for this purpose. The geometrical and material properties are presented in Table
1. The pavement is subjected to a 50 kN FWD load pulse with 25 ms duration and 150 mm radius.

Table 1
Geometrical and material properties

Thickness (mm) E modulus (MPa) Poisson’s ratio Mass density (kg/m?)
Asphalt 150 1000 0.35 2300
Subbase 250 200 0.35 2000
Subgrade 00 100 0.35 1500
1000 - 0 0.02 0.04 0.06 0.08 0.1 0.12
10000 : : : : :
800 ~— 0 \ l
-10000
2 |
600 - 9
[) S
g L
£ 400 - \ |
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©
200 ~ time [sec]
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0 50 100 150 200 250
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Fig. 7. FWD load pulse and its spectrum.
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Fig. 8. Finite element mesh.
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In LAMDA, the geometry was simulated by the use of two layer elements and one half-space element.
The time history of the load pulse F(¢) and its frequency spectrum are shown in Fig. 7. The spatial dis-
tribution S(r) is given by the cylindrical shape shown in Fig. 5(a) with radius ¢ =150 mm.

In the finite element system CAPA-3D, the geometry was simulated by use of 1040, 20 noded brick
elements. Because of the required finite geometry, the structure was assumed to extend 6 m in the horizontal
direction and 15.4 m in the vertical direction. Also, because of axi-symmetry, only a quadrant of the
pavement was simulated. The radius of the loaded area was 150 mm. The detailed mesh surrounding the

loaded area is shown in Fig. 8.

The oscillation of the pavement surface, at several geophone locations, as computed by CAPA-3D is
presented in Fig. 9(a) and by LAMDA in Fig. 9(b). It can be seen that the results are similar except that in
the finite element analysis some disturbances appear at the end of the response, which can be attributed to

the reflections at the boundaries of the mesh.
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Fig. 9. Pavement surface oscillations: (a) CAPA-3d and (b) LAMDA.
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The advantage of the spectral elements method lies in its moderate input and computational require-
ments compared with the finite element method. For the above analyses, the computational requirements
for both methods are summarized in Table 2.

Table 2
Computational requirements
Method Mesh size Computational time Computer type
Finite elements 1040 3h Alpha station 200
Spectral elements 3 50s Intel 300 MHz
Table 3
Geometrical and material properties of Foinquinos et al. (1995)
Layer Thickness (cm) Young’s Modulus (MPa) Shear-wave velocity (m/s)
Asphalt 15 3013 762
Base 30 483 305
Subgrade Variable 124 152
(a)
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0.2 : ‘
_ e o
£ -
£ — Station 1
'g -
= /Wy ... 3
2 e
6
....... -, 7
-0.8
(b)
Time [sec]
0 0.02 0.04 0.06 0.08 0.1
0.2 1 1 1 1
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7
-0.8

Fig. 10. LAMDA results: (a) Bed rock at 6.1 m and (b) no bed rock.
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The results obtained from the spectral element method had also been compared with the multi-layered
stiffness matrix method developed by Kausel and Roesset (1981). For this purpose, the work presented by
Foinquinos et al. (1995), which involves comprehensive use of the method to FWD test simulation, is
utilized. A flexible pavement structure consisting of three layers; asphalt, base and subgrade was simulated.
The material elastic properties and layer thickness are presented in Table 3. An FWD load pulse of 90 kN
and 30 ms was used as input. Two different subgrade conditions were analysed; rockbed at 6 m depth and
infinite soft soil. LAMDA results for both cases are presented in Fig. 10. A comparison with those of Fig. 3
of Foinquinos, shows that they are identical (same format as that in Foinquinos et al. (1995) was used for
closer comparison).

7. Conclusions

The spectral element method has been shown to be an efficient computational tool for analyzing the
dynamic response of multi-layered systems when subjected to a transient load pulse. Comparison with finite
element analysis of some typical pavements under FWD load action and with computational results ob-
tained by use of the layer stiffness matrix method of Kausel and Roesset, the axi-symmetric spectral ele-
ments, developed and implemented in this research work, have shown to be accurate.

The main advantage of the spectral element method over other layered media formulations lies on its
computational efficiency and robustness. The double summation approach of the spectral element evades
the inconvenience of the numerical evaluation of contour integration between zero and infinity, which
results, in many practical applications, to numerical oscillations.

Because waves are described exactly in the spectral element method, one element is adequate to describe
a whole layer. Consequently, the size of the mesh of a layered structure is only as large as the number of the
layers involved. This reduces the computational requirements dramatically and encourages utilization of
this method for parameter identification purposes, which will be addressed in a subsequent contribution.
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